BEGIN:VCALENDAR METHOD:REQUEST PRODID:Microsoft Exchange Server 2010 VERSION:2.0 BEGIN:VTIMEZONE TZID:Eastern Standard Time BEGIN:STANDARD DTSTART:16010101T020000 TZOFFSETFROM:-0400 TZOFFSETTO:-0500 RRULE:FREQ=YEARLY;INTERVAL=1;BYDAY=1SU;BYMONTH=11 END:STANDARD BEGIN:DAYLIGHT DTSTART:16010101T020000 TZOFFSETFROM:-0500 TZOFFSETTO:-0400 RRULE:FREQ=YEARLY;INTERVAL=1;BYDAY=2SU;BYMONTH=3 END:DAYLIGHT END:VTIMEZONE BEGIN:VEVENT ORGANIZER;CN="Hunter, Tiffany":mailto:huntert1@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN=ziyang.son g@mail.mcgill.ca:mailto:ziyang.song@mail.mcgill.ca ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Liu, Jundo ng":mailto:liuj1@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Steinberg, Eric":mailto:steinber@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Fox, Patri ck":mailto:pfox@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Juedes, Da vid":mailto:juedes@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Patterson, James":mailto:pattersj@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Abukamail, Nasseef":mailto:abukamai@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Allwine, D aniel":mailto:allwined@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Bartone, C hris":mailto:bartone@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Goble, Jam es":mailto:goble@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Irwin, Den nis":mailto:irwind@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Jadwisienc zak, Wojciech":mailto:jadwisie@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Karanth, A vinash":mailto:karanth@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Kaya, Sava s":mailto:kaya@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Liu, Chang" :mailto:liuc@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Mourning, Chad":mailto:mourning@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Ostermann, Shawn":mailto:osterman@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Rahman, Fa iz":mailto:rahmanf@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Schlicher, Jared":mailto:schliche@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Ugazio, Sa brina":mailto:ugazio@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Vasiliadis , Konstantinos":mailto:vassilia@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Welch, Lon nie":mailto:welch@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Zhu, Jim":m ailto:zhuj@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Wang, Zhew ei":mailto:wangz1@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Lindner, P atricia":mailto:lindnerp@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Ardrey, Gr egory":mailto:gardrey@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Yadav, Ani mesh":mailto:yadava@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Plis, Kevi n":mailto:plis@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Oun, Ahmed" :mailto:oun@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Mirzanezha d, Majid":mailto:miirza@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Dolan, Joh n":mailto:dolan@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Khalili, F atemeh":mailto:khalili@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN=eecs_bscs@ listserv.ohio.edu:mailto:eecs_bscs@listserv.ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN=eecs_bsee@ listserv.ohio.edu:mailto:eecs_bsee@listserv.ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN=eecs_mscs@ listserv.ohio.edu:mailto:eecs_mscs@listserv.ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN=eecs_phd@l istserv.ohio.edu:mailto:eecs_phd@listserv.ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN=eecs_msee@ listserv.ohio.edu:mailto:eecs_msee@listserv.ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Schultz, A dam":mailto:schultza@ohio.edu ATTENDEE;ROLE=REQ-PARTICIPANT;PARTSTAT=NEEDS-ACTION;RSVP=TRUE;CN="Tirtom, Is mail":mailto:itirtom@ohio.edu DESCRIPTION;LANGUAGE=en-US:Title: Deep and Probabilistic Representation Lea rning for Electronic Health Records\nAbstract:\nArtificial Intelligence (A I) has achieved remarkable success across a broad range of fields\; howeve r\, it often remains insufficiently prepared for deployment in high-stakes scenarios like healthcare. Recent advancements in AI for language and vis ion have increasingly prioritized accuracy over explainability\, thereby c onstraining their practical utility and potentially posing risks to human lives. In contrast\, while statistical machine learning models excel in pr oviding interpretable analyses\, they often fall short in predictive perfo rmance. We aim to explore AI solutions for healthcare applications that co mbine strong predictive performance with strong explainability. In this ta lk\, I will discuss three key research topics: (1) generative AI for healt hcare time series\, enabling interpretable trajectory analysis\; (2) proba bilistic models for medical language modeling\, integrating neural network s into inference for greater flexibility\; (3) a long-term vision for comb ining deep learning and statistical machine learning to advance scientific discovery.\nBio:\nZiyang Song is a Ph.D. candidate in the School of Compu ter Science at McGill University. His research revolves around Artificial Intelligence for health\, with a particular focus on generative artificial intelligence and statistical machine learning. Specifically\, his researc h designs AI models with explainability by bridging deep learning and stat istical models for healthcare applications. He has published in top-tier m achine learning (e.g.\, ICLR\, KDD) and interdisciplinary conferences (e.g .\, MLHC\, ACM-BCB). He also received notable honors\, including KDD Healt h Day Best Paper Award (2022) and ACM BCB Rising Star Award (2024). He als o secured Quebec’s prestigious FRQNT Doctoral Research Scholarship (2022 -2026) for deploying real-world AI systems for at-risk population. He has collaborated with Université de Montréal (UdeM) and conducted research a t Centre hospitalier universitaire Sainte-Justine (CHU-SJ)\, where he desi gned AI models to identify high-risk patients with interpretable analysis in clinical settings.\n___________________________________________________ _____________________________\nMicrosoft Teams Need help?
View Site in Mobile | Classic
Share by: