Free Piston Beta drive engine
Referring to the section on Sinusoidal Volume Variations we find that both Beta and Gamma type machines have more complex relations in that the movement of both the piston and the displacer affects the volume variation of the compression space Vc.
In the phasor diagram following:
φ is the
phase advance of the displacer with respect to the piston,
δ
is the phase advance of the compression space volume with respect
to the piston, and
α is the phase advance of the expansion
space volume with respect to the compression space volume.
In the following
MATLAB program we assume that both the piston and displacer motions
are sinusoidal.
function betadrive % Beta drive engine configuration % Israel Urieli 1/22/08 global vclc vcle % compression,expansion clearence vols [m^3] global vswc vswe % compression, expansion swept volumes [m^3] global alpha % phase angle advance of expansion space [radians] global new fid % new data file fprintf( 'beta drive engine configuration\n' ) if (strncmp(new, 'y' ,1)) xpa = input( 'enter piston amplitude (m): ' ); xda = input( 'enter displacer amplitude (m): ' ); phid = input( 'enter displacer phase angle advance [degrees]: ' ); dp = input( 'enter piston diameter (m): ' ); dd = input( 'enter displacer diameter (m): ' ); dr = input( 'enter displacer rod diameter (m): ' ); vclc = input( 'enter compression space clearance volume [m^3]: ' ); vcle = input( 'enter expansion space clearance volume [m^3]: ' ); fprintf(fid, '%.3e\n' , xpa); fprintf(fid, '%.3e\n' , xda); fprintf(fid, '%.1f\n' , phid); fprintf(fid, '%.3e\n' , dp); fprintf(fid, '%.3e\n' , dd); fprintf(fid, '%.3e\n' , dr); fprintf(fid, '%.3e\n' , vclc); fprintf(fid, '%.3e\n' , vcle); else xpa = fscanf(fid, '%e' ,1); xda = fscanf(fid, '%e' ,1); phid = fscanf(fid, '%f' ,1); dp = fscanf(fid, '%e' ,1); dd = fscanf(fid, '%e' ,1); dr = fscanf(fid, '%e' ,1); vclc = fscanf(fid, '%e' ,1); vcle = fscanf(fid, '%e' ,1); end ap = pi*dp*dp/4; % piston area (m^2) ad = pi*dd*dd/4; % displacer area (m^2) ar = pi*dr*dr/4; % displacer rod area (m^2) vpa = xpa*(ap - ar); % (piston - rod) volume aplitute {m^3) vda = xda*(ad - ar); % (displacer - rod) volume amplitude(m^3) vea = xda*ad; % displacer volume aplitute {m^3) phi = phid*pi/180; % radians delta = atan2(vda*sin(phi),(vda*cos(phi) - vpa)); % compression space volume to piston amplitude phase advance vca = sqrt(vpa*vpa - 2*vpa*vda*cos(phi) + vda*vda); % compression space volume amplitude (m^3) vswc = 2*vca; % compression space swept volume (m^3) vswe = 2*vea; % expansion space swept volume (m^3) alpha = pi + phi - delta; % expansion phase angle advance (radians) fprintf( '\nbeta drive engine data summary:\n' ); fprintf( ' comp clearence,swept vols %.1f, %.1f [cm^3]\n' , vclc*1e6,vswc*1e6); fprintf( ' exp clearence,swept vols %.1f, %.1f [cm^3]\n' , vcle*1e6,vswe*1e6); fprintf( ' expansion phase angle advance %.1f[degrees]\n\n' , alpha*180/pi); %==============================================================
Stirling Cycle Machine Analysis
by Israel
Urieli
is licensed under a Creative
Commons Attribution-Noncommercial-Share Alike 3.0 United States
License
(740) 593–9381 | Building 21, The Ridges
Ohio University | Athens OH 45701 | 740.593.1000 ADA Compliance | © 2018 Ohio University . All rights reserved.