Reynolds Number, Flow Friction & Heat Transfer Coefficients
The following four functions reynum (Reynolds Number), pipefr (tubular), foilfr (wrapped foil) and matrixfr (wire mesh) are used in the simple function set for heat transfer and flow friction evaluation.
function [mu,kgas,re] = reynum(t,g,d) % evaluate dynamic viscosity, thermal conductivity, Reynolds number % Israel Urieli, 7/22/2002 (mu units correction 2/13/2011) % Arguments: % t - gas temperature [K] % g - mass flux [kg/m^2.s] % d - hydraulic diameter [m] % Returned values: % mu - gas dynamic viscosity [kg/m.s] % kgas - gas thermal conductivity [W/m.K] % re - Reynolds number global cp % specific heat capacity at constant pressure [J/kg.K] global mu0 % dynamic viscosity at reference temp t0 [kg.m/s] global t0 t_suth % reference temperature [K], Sutherland constant [K] global prandtl % Prandtl number mu = mu0*(t0 + t_suth)/(t + t_suth)*(t/t0)^1.5; kgas = cp*mu/prandtl; re = abs(g)*d/mu; if (re < 1) re = 1; end
function [ht,fr]=pipefr(d,mu,re); % evaluate heat transfer coefficient, Reynolds friction factor % Israel Urieli, 7/22/2002 (corrected header 2/20/2011) % Arguments: % d - hydraulic diameter [m] % mu - gas dynamic viscosity [kg.m/s] % re - Reynolds number % Returned values: % ht - heat transfer coefficient [W/m^2.K] % fr - Reynolds friction factor ( = re*fanning friction factor) global cp % specific heat capacity at constant pressure [J/kg.K] global prandtl % Prandtl number % Personal communication with Allan Organ, because of oscillating % flow, we assume that flow is always turbulent. Use the Blasius % relation for all Reynolds numbers: fr=0.0791*re^0.75; % From Reynolds simple analogy: ht=fr*mu*cp/(2*d*prandtl);
function [st,ht,fr] = foilfr(d,mu,re) % evaluate regenerator wrapped foil stanton number, friction factor % Israel Urieli, 7/22/2002 % Arguments: % d - hydraulic diameter [m] % mu - gas dynamic viscosity [kg.m/s] % re - Reynolds number % Returned values: % st - Stanton number % ht - heat transfer coefficient [W/m^2.K] % fr - Reynolds friction factor ( = re*fanning friction factor) global cp % specific heat capacity at constant pressure [J/kg.K] global prandtl % Prandtl number if (re < 2000) % normally laminar flow fr = 24; else fr = 0.0791*re^0.75; end % From Reynolds simple analogy: st=fr/(2*re*prandtl); ht=st*re*cp*mu/d;
function [st,fr] = matrixfr(re) % evaluate regenerator mesh matrix stanton number, friction factor % Israel Urieli, 7/22/2002 % Arguments: % re - Reynolds number % Returned values: % st - Stanton number % fr - Reynolds friction factor ( = re*fanning friction factor) global prandtl % Prandtl number % equations taken from Kays & London (1955 edition) st = 0.46*re^(-0.4)/prandtl; fr = 54 + 1.43*re^0.78;
Stirling Cycle Machine Analysis by Israel
Urieli
is licensed under a Creative
Commons Attribution-Noncommercial-Share Alike 3.0 United States
License
(740) 593–9381 | Building 21, The Ridges
Ohio University | Athens OH 45701 | 740.593.1000 ADA Compliance | © 2018 Ohio University . All rights reserved.