Reynolds Number, Flow Friction & Heat Transfer Coefficients

The following four functions reynum (Reynolds Number), pipefr (tubular), foilfr (wrapped foil) and matrixfr (wire mesh) are used in the simple function set for heat transfer and flow friction evaluation.

   function 
 
 
   [mu,kgas,re] = reynum(t,g,d) 
 
 
   % evaluate dynamic viscosity, thermal conductivity, Reynolds number 
 
 
   % Israel Urieli, 7/22/2002 (mu units correction 2/13/2011) 
 
 
   % Arguments: 
 
 
   %   t - gas temperature [K] 
 
 
   %   g - mass flux [kg/m^2.s] 
 
 
   %   d - hydraulic diameter [m] 
 
 
   % Returned values: 
 
 
   %   mu - gas dynamic viscosity [kg/m.s] 
 
 
   %   kgas - gas thermal conductivity [W/m.K] 
 
 
   %   re - Reynolds number 
 
 
   global 
 
 
   cp 
 
 
   % specific heat capacity at constant pressure [J/kg.K] 
 
 
   global 
 
 
   mu0 
 
 
   % dynamic viscosity at reference temp t0 [kg.m/s] 
 
 
   global 
 
 
   t0 t_suth 
 
 
   % reference temperature [K], Sutherland constant [K] 
 
 
   global 
 
 
   prandtl 
 
 
   % Prandtl number 
 
 
   mu = mu0*(t0 + t_suth)/(t + t_suth)*(t/t0)^1.5; 
 
 
   kgas = cp*mu/prandtl; 
 
 
   re = abs(g)*d/mu; 
 
 
   if 
 
 
   (re < 1) 
 
 
   re = 1; 
 
 
   end 
 
 



   function 
 
 
   [ht,fr]=pipefr(d,mu,re); 
 
 
   % evaluate heat transfer coefficient, Reynolds friction factor 
 
 
   % Israel Urieli, 7/22/2002 (corrected header 2/20/2011) 
 
 
   % Arguments: 
 
 
   %   d - hydraulic diameter [m] 
 
 
   %   mu - gas dynamic viscosity [kg.m/s] 
 
 
   %   re - Reynolds number 
 
 
   % Returned values: 
 
 
   %   ht - heat transfer coefficient [W/m^2.K] 
 
 
   %   fr - Reynolds friction factor ( = re*fanning friction factor) 
 
 
   global 
 
 
   cp 
 
 
   % specific heat capacity at constant pressure [J/kg.K] 
 
 
   global 
 
 
   prandtl 
 
 
   % Prandtl number 
 
 
   % Personal communication with Allan Organ, because of oscillating 
 
 
   % flow, we assume that flow is always turbulent. Use the Blasius 
 
 
   % relation for all Reynolds numbers: 
 
 
   fr=0.0791*re^0.75; 
 
 
   % From Reynolds simple analogy: 
 
 
   ht=fr*mu*cp/(2*d*prandtl); 
 
 



   function 
 
 
   [st,ht,fr] = foilfr(d,mu,re) 
 
 
   % evaluate regenerator wrapped foil stanton number, friction factor 
 
 
   % Israel Urieli, 7/22/2002 
 
 
   % Arguments: 
 
 
   %   d - hydraulic diameter [m] 
 
 
   %   mu - gas dynamic viscosity [kg.m/s] 
 
 
   %   re - Reynolds number 
 
 
   % Returned values: 
 
 
   %   st - Stanton number 
 
 
   %   ht - heat transfer coefficient [W/m^2.K] 
 
 
   %   fr - Reynolds friction factor ( = re*fanning friction factor) 
 
 
   global 
 
 
   cp % specific heat capacity at constant pressure [J/kg.K] 
 
 
   global 
 
 
   prandtl % Prandtl number 
 
 
   if 
 
 
   (re < 2000) % normally laminar flow 
 
 
   fr = 24; 
 
 
   else 
 
 
   fr = 0.0791*re^0.75; 
 
 
   end 
 
 
   % From Reynolds simple analogy: 
 
 
   st=fr/(2*re*prandtl); 
 
 
   ht=st*re*cp*mu/d; 
 
 
   function 
 
 
   [st,fr] = matrixfr(re) 
 
 
   % evaluate regenerator mesh matrix stanton number, friction factor 
 
 
   % Israel Urieli, 7/22/2002 
 
 
   % Arguments: 
 
 
   %   re - Reynolds number 
 
 
   % Returned values: 
 
 
   %   st - Stanton number 
 
 
   %   fr - Reynolds friction factor ( = re*fanning friction factor) 
 
 
   global 
 
 
   prandtl 
 
 
   % Prandtl number 
 
 
   % equations taken from Kays & London (1955 edition) 
 
 
   st = 0.46*re^(-0.4)/prandtl; 
 
 
   fr = 54 + 1.43*re^0.78; 
 
 




Stirling Cycle Machine Analysis by Israel Urieli is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License


View Site in Mobile | Classic
Share by: