The cooler heat transfer performance function 'kolsim'
function tgk = kolsim(var,twk,qrloss) % evaluate cooler average heat transfer performance % Israel Urieli, 7/22/2002 % Modified 2/6/2010 to include regenerator qrloss % Arguments: % var(22,37) array of variable values every 10 degrees (0 - 360) % twk - cooler wall temperature [K] % qrloss - heat loss due to imperfect regenerator [J] % Returned values: % tgk - cooler average gas temperature [K] % Row indices of the var, array: TC = 1; % Compression space temperature (K) TE = 2; % Expansion space temperature (K) QK = 3; % Heat transferred to the cooler (J) QR = 4; % Heat transferred to the regenerator (J) QH = 5; % Heat transferred to the heater (J) WC = 6; % Work done by the compression space (J) WE = 7; % Work done by the expansion space (J) W = 8; % Total work done (WC + WE) (J) P = 9; % Pressure (Pa) VC = 10; % Compression space volume (m^3) VE = 11; % Expansion space volume (m^3) MC = 12; % Mass of gas in the compression space (kg) MK = 13; % Mass of gas in the cooler (kg) MR = 14; % Mass of gas in the regenerator (kg) MH = 15; % Mass of gas in the heater (kg) ME = 16; % Mass of gas in the expansion space (kg) TCK = 17; % Conditional temperature compression space / cooler (K) THE = 18; % Conditional temeprature heater / expansion space (K) GACK = 19; % Conditional mass flow compression space / cooler (kg/rad) GAKR = 20; % Conditional mass flow cooler / regenerator (kg/rad) GARH = 21; % Conditional mass flow regenerator / heater (kg/rad) GAHE = 22; % Conditional mass flow heater / expansion space (kg/rad) global tk % cooler temperature [K] global freq omega % cycle frequency [herz], [rads/s] global ak % cooler internal free flow area [m^2] global awgk % cooler internal wetted area [m^2] global dk % cooler hydraulic diameter [m] % Calculating the Reynolds number over the cycle for (i = 1:1:37) ak(i) = (var(GACK,i) + var(GAKR,i))*omega/2; gk = gak(i)/ak; [mu,kgas,re(i)] = reynum(tk,gk,dk); end % Average and maximum Reynolds number sumre=0; remax=re(1); for (i=1:1:36) sumre=sumre + re(i); if (re(i) > remax) remax = re(i); end end reavg = sumre/36; [ht,fr] = pipefr(dk,mu,reavg); % Heat transfer coefficient tgk = twk - (var(QK,37)-qrloss)*freq/(ht*awgk); % Heater gas temperature [K] fprintf( '============ Cooler Simple analysis =============\n' ) fprintf( ' Average Reynolds number : %.1f\n' ,reavg) fprintf( ' Maximum Reynolds number : %.1f\n' ,remax) fprintf( ' Heat transfer coefficient [W/m^2*K] : %.2f\n' ,ht) fprintf( 'cooler wall/gas temperatures: Twk = %.1f[K], Tk = %.1f[K]\n' ,twk,tgk);
Stirling Cycle Machine Analysis by Israel
Urieli
is licensed under a Creative
Commons Attribution-Noncommercial-Share Alike 3.0 United States
License
(740) 593–9381 | Building 21, The Ridges
Ohio University | Athens OH 45701 | 740.593.1000 ADA Compliance | © 2018 Ohio University . All rights reserved.