The regenerator enthalpy loss function 'regsim'
function qrloss = regsim(var) % Evaluate the effectiveness and performance of the regenerator % Israel Urieli, 7/23/2002 - Modified 2/15/2010 % modified 11/27/2010 to include 'no regenerator matrix' % Arguments: % var(22,37) array of variable values every 10 degrees (0 - 360) % Returned value: % qrloss - regenerator net enthalpy loss [J] % Row indices of the var, array TC = 1; % Compression space temperature (K) TE = 2; % Expansion space temperature (K) QK = 3; % Heat transferred to the cooler (J) QR = 4; % Heat transferred to the regenerator (J) QH = 5; % Heat transferred to the heater (J) WC = 6; % Work done by the compression space (J) WE = 7; % Work done by the expansion space (J) W = 8; % Total work done (WC + WE) (J) P = 9; % Pressure (Pa) VC = 10; % Compression space volume (m^3) VE = 11; % Expansion space volume (m^3) MC = 12; % Mass of gas in the compression space (kg) MK = 13; % Mass of gas in the cooler (kg) MR = 14; % Mass of gas in the regenerator (kg) MH = 15; % Mass of gas in the heater (kg) ME = 16; % Mass of gas in the expansion space (kg) TCK = 17; % Conditional temperature compression space / cooler (K) THE = 18; % Conditional temeprature heater / expansion space (K) GACK = 19; % Conditional mass flow compression space / cooler (kg/rad) GAKR = 20; % Conditional mass flow cooler / regenerator (kg/rad) GARH = 21; % Conditional mass flow regenerator / heater (kg/rad) GAHE = 22; % Conditional mass flow heater / expansion space (kg/rad) global matrix_type % m)esh or f)oil global ar % regen internal free flow area [m^2] global awgr % regen internal wetted area [m^2] global dr % regen hydraulic diameter [m] global tr % regen temperature [K] global freq omega % cycle frequency [herz], [rads/s] % Reynolds number over the cycle for (i = 1:1:37) gar(i) = (var(GAKR,i) + var(GARH,i))*omega/2; gr = gar(i)/ar; [mu,kgas,re(i)] = reynum(tr,gr,dr); end % average and maximum Reynolds number sumre = 0; remax = re(1); for (i = 1:1:36) sumre = sumre + re(i); if (re(i) > remax) remax = re(i); end end reavg = sumre/36; % Stanton number, number of transfer units, regenerator effectiveness if (strncmp(matrix_type, 'm' ,1)) [st,fr] = matrixfr(reavg); elseif (strncmp(matrix_type, 'f' ,1)) [st,ht,fr] = foilfr(dr,mu,reavg); elseif (strncmp(matrix_type, 'n' ,1)) [st,ht,fr] = foilfr(dr,mu,reavg); end ntu = st*awgr/(2*ar); effect = ntu/(ntu + 1); % Calculate qrloss for (i=1:1:37) qreg(i) = var(QR,i); end qrmin = min(qreg); qrmax = max(qreg); qrloss = (1 - effect)*(qrmax - qrmin); % Regenerator simple analysis results: fprintf( '============ Regenerator Simple analysis =============\n' ) fprintf( 'Average Reynolds number: %.1f\n' , reavg); fprintf( 'Maximum Reynolds number: %.1f\n' , remax); fprintf( 'Stanton number(Average Re): %.3f\n' ,st); fprintf( 'Number of transfer units: %.1f\n' ,ntu); fprintf( 'Regenerator effectiveness : %.3f\n' ,effect); fprintf( 'Regenerator net enthalpy loss: %.1f[W]\n' , qrloss*freq);
Stirling Cycle Machine Analysis by Israel
Urieli
is licensed under a Creative
Commons Attribution-Noncommercial-Share Alike 3.0 United States
License
(740) 593–9381 | Building 21, The Ridges
Ohio University | Athens OH 45701 | 740.593.1000 ADA Compliance | © 2018 Ohio University . All rights reserved.