%Polar Coordinates %If you modify this file, please indicate here and in the footnote %Math263B \documentclass[12pt]{article} \usepackage{times} \pagestyle{empty} \addtolength{\textwidth}{1.2in} \addtolength{\textheight}{1.2in} \addtolength{\oddsidemargin}{-.6in} \addtolength{\evensidemargin}{-.6in} \renewcommand{\baselinestretch}{1.2} \parindent = 0cm \parskip = .1cm \begin{document} \begin{center} {\Large Polar Coordinates\footnote{Copyright \copyright 2002 Steve Chapin. All rights reserved. Please address comments to young@math.ohiou.edu.}} \end{center} \begin{enumerate} \item Enter the following sequence of commands:\\ \verb& syms t& \\ \verb& r = cos(4*t)& \dotfill Use \verb$t$ in place of $\theta$. \\ \verb& ezplot(r*cos(t), r*sin(t), [0,2*pi])& \\ This plots the polar equation $r = \cos{4\theta}$. Explain why. \item Using the pattern above, plot the polar equation $r = \sin(n\theta)$ for several positive integers $n$. (Use the $\uparrow$ key.) Find a formula for the number of loops. \item Plot the polar equation $r = \sin(p\theta/q)$ for various integers $p$ and $q$, satisfying\\ $p$ \verb$>$ $q$ \verb$>$ $0$. Write $p/q$ in lowest terms and plot over the interval [0, 2$\pi$q]. Find a formula for the number of loops. \item Plot the polar equation $r = \sin(\sqrt{2} \, \theta)$ on the interval $[0, 100\pi]$. Explain the resulting plot. \item Plot the polar equation $r = e^{\cos \theta} - 2\cos4\theta + \sin^5(\theta/12)$ for $0 \le \theta \le 24\pi$. (This curve was discovered by Temple H. Fay.) What does the graph resemble? (Type: \verb& exp(cos(t)) & for $e^{\cos \theta}$ and \verb& (sin(t/12))^5 & for $\sin^5 (\theta/12)$.) \item On a separate piece of paper, prepare a brief written report describing what happened and answering all the questions. Use complete sentences and use standard mathematical notation. Hand-in sketches of graphs or computer plots as directed by your instructor. \end{enumerate} \vfill \noindent {\sf Polar equations can be plotted by transforming them into parametric equations.} \end{document}
View Site in Mobile | Classic
Share by: