%Homogeneous ODEs with Constant Coefficients
%Math340
\documentclass[12pt]{article}
\usepackage{times}
\pagestyle{empty}
\addtolength{\textwidth}{1.2in}
\addtolength{\textheight}{1.2in}
\addtolength{\oddsidemargin}{-.58in}
\addtolength{\evensidemargin}{-.58in}
\renewcommand{\baselinestretch}{1.0}
\parindent = 0cm
\parskip = .1cm
\begin{document}
\begin{center}
{\Large
Homogeneous ODEs with Constant Coefficients
\footnote{Copyright \copyright 2002 Steve Chapin and Larry Snyder.
All rights reserved. Please address comments to young@math.ohiou.edu.}}
\end{center}
Try the following in \textsc{MatLab}:\\
\verb& syms m& \\
\verb& eqn1 = 'm^2 - 3*m-1 = 0'& \\
\verb& eqn2 = 'm^4 - 4*m^3 + 14*m^2 - 20*m + 25 = 0'& \\
\verb& solve(eqn1)& \\
\verb& solve(eqn2)&
\bigskip
For each of the following differential equations:
\begin{itemize}
\item Write down the auxiliary equation.
\item Write down, in standard mathematical notation, all of the
solutions to the auxiliary equation.
(Use \textsc{MatLab} to find the solutions.)
\item Write down the general solution of the differential equation.
\end{itemize}
\bigskip
(a) \qquad $y''' + y'' - 6y' - 18y = 0$
\bigskip
(b) \qquad $y^{(4)} - 2y''' - 6y'' + 16y' - 8y = 0$
\bigskip
(c) \qquad $y^{(4)} - 3y''' + 7y'' + 21y' - 26y = 0$
\bigskip
(d) \qquad $y^{(5)} - 2y^{(4)} + 2y''' - 4y'' + y' - 2y = 0$
\bigskip
(e) \qquad $2y^{(5)} - y^{(4)} - 4y''' + 3y'' - 8y' - 12y = 0$
\end{document}