%Separation of Variables
%If file is modified, please note here and in the footnote below.
%Math340
\documentclass[12pt]{article}
\usepackage{times}
\pagestyle{empty}
\addtolength{\textwidth}{1.2in}
\addtolength{\textheight}{1.2in}
\addtolength{\oddsidemargin}{-.58in}
\addtolength{\evensidemargin}{-.58in}
\renewcommand{\baselinestretch}{1.0}
\parindent = 0cm
\parskip = .1cm
\begin{document}
\begin{center}
{\Large
Separation of Variables
\footnote{Copyright \copyright 2002 Steve Chapin and Larry Snyder.
All rights reserved. Please address comments to young@math.ohiou.edu.}}
\end{center}
\begin{itemize}
\item Enter the following sequence of commands: \\
\verb& syms t& \\
\verb& f = sqrt(9-t^2)& \\
\verb& int(f)& \dotfill An antiderivative of \verb$f$.\\
\verb& int(f, -3, 3)& \dotfill The definite integral.\\
\verb& g = t*acos(t)& \dotfill acos(t) is \verb$arccos t$ \\
\verb& diff(g)& \\
\verb& pretty(ans)& \\
\verb& diff(g, 2)& \dotfill The second derivative of \verb$g$. \\
\verb& pretty(ans)& \\
\verb& diff(g, 3)& \dotfill The third derivative of \verb$g$. \\
\verb& pretty(ans)& \\
\verb& ezplot(f, [-3, 3])& \\
\verb& ezplot(g, [-1, 1])&
\item {\bf Remarks.} The graph of \verb&f& should be the upper
half of a circle. It will be distorted because of
the default scale on the y-axis. Display the graph again and in the
\verb&Figure window&, click on \fbox{Edit}.
Pull down to \verb&Axes Properties&. Reset the y-limits to be
\verb$-1.5$ and \verb$3.1$, click on \fbox{Apply} and then \fbox{OK}.
The graph should now appear more like a semicircle.
Type \verb& help sym/diff & or \verb& help int & in \textsc{MatLab} for
more info on the use of \verb&diff& or \verb∫&.
\end{itemize}
Following the methodology above, using a separate piece of paper, do the following.
\begin{enumerate}
\item Find the particular solution to the ODE $y'' = \sec y'$ that
is tangent to the \verb$t$-axis at the origin ($y'(0) = 0, y(0) = 0$). Use the method of separation
of variables, and make sure to include all of the steps. Use \textsc{MatLab}
to compute the appropriate integrals.
(Hint. Let $u = y'$ and remember to add a constant of
integration where appropriate.)
\item Find the area under the graph of the solution of the IVP in
part (a) on the interval $[-1, 1]$. Make sure to write the formula you
use, not just the answer. Again, use \textsc{MatLab} to compute the
appropriate integrals.
\item Use \textsc{MatLab} to plot the solution of the IVP in
part (a) on the interval $[-1, 1]$. Sketch the graph, \emph{by hand}.
DO NOT HAND IN A PRINTOUT!
\item Find the absolute maximum value of the solution on the interval
$[-1, 1]$.
\end{enumerate}
\end{document}