%Spring-mass system %If you modify this file, please indicate here and in the footnote %Math340 \documentclass[12pt]{article} \usepackage{times} \pagestyle{empty} \addtolength{\textwidth}{1.2in} \addtolength{\textheight}{1.2in} \addtolength{\oddsidemargin}{-.58in} \addtolength{\evensidemargin}{-.58in} \renewcommand{\baselinestretch}{1.0} \parindent = 0cm \parskip = .1cm \begin{document} {\begin{center} {\Large A Spring-Mass System\footnote{Copyright \copyright 2002 Larry Snyder and Todd Young. All rights reserved. Please address comments to young@math.ohiou.edu.}} \end{center} \begin{enumerate} \item Type the following commands (at the prompt and then press \fbox{Enter}): \vspace{-.2cm} \begin{enumerate} \item \verb&syms a& \item \verb&y = dsolve('2*D2y+.5*Dy+5*y=sin(a*t)','y(0)=1','Dy(0)=1') & \item \verb&y1 = subs(y, a, 1) & \dotfill Substitutes ``1'' for \verb$a$. \item \verb&ezplot(y1, [0,50]) & \item Explain exactly what happened. \end{enumerate} \vspace{.2cm} \item Repeat (b) and (c) for different values of \verb&a&, both more and less than \verb$1$. By trial and error find a value of \verb$a$ that maximizes the amplitude of the solution. From the equation, what is its `natural' or `resonant' frequency? What should happen when \verb&a& is set to this value? Test your hypothesis. \vspace{.2cm} \item Prepare a brief (\verb$< $1 page) written report answering all the questions. Use complete sentences and standard mathematical notation. Do {\bf not} get a printout. \end{enumerate} \vfill \noindent {\sf The user examines what happens when a system is excited at different frequencies, the relationship between natural frequency and amplitude of the forced, damped ocsillator.} \end{document}
View Site in Mobile | Classic
Share by: