Campus: | Ohio University, Athens Campus |
---|---|
Department: | Mathematics |
Academic Year: | 2015 - 2016 |
Term: | Spring Semester |
Course: | MATH 2301 |
Title: | Calculus I |
Lecture Section: | 101 (Class Number 4173) |
Lecture Instructor: | Mark Barsamian |
Contact Information: | My contact information is posted on my web page . |
Office Hours: | My office hours are posted on my web page . |
Course Description: First course in calculus and analytic geometry with applications in the sciences and engineering. Includes basic techniques of differentiation and integration with applications including rates of change, optimization problems, and curve sketching; includes exponential, logarithmic and trigonometric functions. No credit for both MATH 2301 and 1350.
Prerequisites: (A in 163A) or (B or better in MATH 1350) or (C or better in 1300 or 1322) or (Math Placement Level 3)
Retake: May be retaken two times excluding withdrawals, but only last course taken counts.
Meeting Times and Locations:
Instructors:
Syllabus: For Section 101 (Class Number 4173), this web page replaces the usual paper syllabus. If you need a paper syllabus (now or in the future), print this web page.
Remark on Webassign: In MATH 2301 (Section 101), I will not be assigning WebAssign homework. If you buy a textbook with access to the WebAssign system, you will be able to access WebAssign and use it for practice problems if you want, but that is entirely up to you. Some students like doing practice problems on the computer. But if you want to save money and buy a cheaper textbook without access to WebAssign, or buy a used textbook (those also won't have access to WebAssign), or buy an e-book (I don't know if they have access to WebAssign or not), feel free to do that.
What is most important is that you get a book that is all three of these things:
and that you have the book by Monday, January 11. You will need to start studying the book right away.
Calculators will not be allowed on exams.
Websites with Useful Math Software: In lectures, I often use a computer for graphing and calculating. The software that I use is free and is easily accessible at the following list of links. I use the same software in my office, instead of a calculator. You are encouraged to use this same free software instead of a calculator. ( Link )
Student Resources (Tutoring and Supplemental Instruction (SI)): There are many math-related resources for students on the Athens Campus of Ohio University. For information, go to the following link. ( Link )
Special Needs: If you have physical, psychiatric, or learning disabilities that require accommodations, please let me know as soon as possible so that your needs may be appropriately met.
Attendance Policy: Attendance is required for all lectures, recitations, and exams, and will be recorded using sign-in sheets.
Missing Class: If you miss a lecture or recitation for any reason, it is your responsibility to copy someone�s notes or download my notes from the course web page, and study them. I will not use office hours to teach topics discussed in class to students who were absent.
Missing a Quiz or Exam Because of Illness: If you are too sick to take a quiz or exam, then you must
Missing Quizzes or Exams Because of University Activity: If you have a University Activity that conflicts with one of our quizzes or exams, you must contact me before the quiz or exam to discuss arrangements for a make-up. I will need to see documentation of your activity. If you miss a quiz or an exam because of a University Activity without notifying me in advance, you will not be given a make-up.
Missing Quizzes or Exams Because of Personal Travel Plans: All of our quizzes and in-class exams are on Fridays. This includes the Friday before Spring Break. Our final exam is on Monday, April 25. Please don't bother asking me if you can make up a quiz or exam, or take it early, because your ride home is leaving earlier in the day, or because you already bought a plane ticket with an early departure time. The answer is, No you may not have a make-up or take the quiz or exam early because of personal travel plans. You will just have to forfeit that quiz or exam.
In-Class Group Work cannot be made-up for any reason.
Cheating on Exams or Quizzes: If cheat on an exam or quiz, you will receive a zero on that exam or quiz and I will submit a report to the Office of Community Standards and Student Responsibility (OCSSR). If you cheat on another exam, you will receive a grade of F in the course and I will again submit a report to the OCSSR.
Grading for Section 101 (Class Number 4173): During the semester, you will accumulate points as described in the table below. (Note that no scores are dropped.)
In-Class Group Work (about 25): | 50 points possible |
---|---|
Quizzes (10 quizzes, 20 points each): | 200 points possible |
In-Class Exams (4 exams, 125 points each): | 500 points possible |
Cumulative Final Exam: | 250 points possible |
Total: | 1000 points possible |
At the end of the semester, your Total will be converted to your Course Grade as described in the table below. (Note that there is no curve.)
Total Score | Percentage | Grade | Interpretation |
---|---|---|---|
900 - 1000
|
90% - 100% | A-, A | You mastered all concepts, with no significant gaps |
800 - 899
|
80% - 89.9% | B-, B, B+ | You mastered all essential concepts and many advanced concepts, but have some significant gaps. |
700 - 799
|
70% - 79.9% | C-, C, C+ | You mastered most essential concepts and some advanced concepts, but have many significant gaps. |
600 - 699
|
60% - 69.9% | D-, D, D+ | You mastered some essential concepts. |
0 - 599
|
0% - 59.9% | F | You did not master essential concepts. |
Course Structure: One learns math primarily by trying to solve problems. This course is designed to provide structure for you as you learn to solve problems, and to test how well you have learned to solve them. This structure is provided in the following ways:
Suggested Exercises: The goal of the course is for you to be able to solve all of the Suggested Exercises . They are not to be turned in and are not graded, but you should do as many as possible and keep your solutions in a notebook. For your convenience, the table can be printed from the PDF file at the following link: ( Suggested Exercises ). It would be a good idea to print out the table and keep it at the front of your notebook, to keep track of which exercises you have done.
Section | Suggested Exercises |
---|---|
1.3 The Limit of a Function | 2, 3, 5, 8, 12, 21 |
1.4 Calculating Limits | 2, 3, 10, 12, 15, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 35, 42, 43, 45, 47 |
1.5 Continuity | 3, 4, 6, 13, 14, 15, 16, 29, 30, 32, 37, 39, 41, 45 |
1.6 Limits Involving Infinity | 1, 2, 3, 4, 5, 6, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 41, 42 |
2.1 Derivatives and Rates of Change | 1, 4, 5, 7, 9, 11, 15, 16, 17, 18, 23, 25, 27, 43 |
2.2 The Derivative as a Function | 1, 3, 5, 7, 9, 11, 13, 17, 18, 19, 20, 12, 22, 35, 36 |
2.3 Basic Differentiation Formulas | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 43, 45, 47, 49, 51 |
2.4 The Product and Quotient Rules | 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 51, 55 |
2.5 The Chain Rule | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 39, 47, 51, 53, 57, 62 |
2.6 Implicit Differentiation | 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 25, 32 |
2.7 Related Rates | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 25, 29 |
2.8 Linear Approx. & Differentials | 1, 5, 11, 12, 15, 17, 19, 20, 21, 23, 24 |
3.2 Inverse Functions and Logarithms | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 18, 29, 31, 33, 35, 37, 39, 44, 46, 48, 63 |
3.3 Derivatives of Log. & Exp. Funcs. | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 65 |
3.5 Inverse Trigonometric Functions | 1, 3, 5, 7, 9, 13, 17, 19, 21, 23, 25, 34, 35, 37, 39 |
3.6 Hyperbolic Functions (skip inverses) | 1, 2, 3, 4, 5, 6, 19, 27, 28, 29, 30, 31, 32, 33, 34, 35, 43, 44, 45, 46 |
3.7 Indeter. Forms & L'Hopital's Rule | 1, 5, 9, 13, 17, 21, 25, 29, 33, 41, 43, 47 |
4.1 Maximum and Minimum Values | 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 36, 37, 39, 41, 43, 45 |
4.2 The Mean Value Theorem | 1, 3, 5, 7, 9, 11, 13, 15, 17, 23, 26, 27 |
4.3 Derivatives and the Shape of a Graph | 1, 3, 5, 7, 9, 11, 15, 19, 21, 23, 25, 27, 29, 33, 35, 40, 41 |
4.4 Curve Sketching | 5, 7, 9, 11, 13, 15, 17, 21, 27, 31, 33, 37, 39, 41, 43 |
4.5 Optimization Problems | 3, 5, 7, 9, 13, 15, 16, 17, 21, 22, 25, 26, 40 |
4.6 Newton�s Method | 1, 3, 5, 6, 9, 21, 22 |
4.7 Antiderivatives | 1, 5, 9, 13, 17, 21, 25, 29, 31, 33, 35, 37, 41, 44 |
5.1 Areas and Distances | 1, 3, 5, 7, 9, 11, 13, 14 |
5.2 The Definite Integral | 1, 3, 5, 7, 9, 11, 19-21, 23, 29, 30, 31, 33, 35, 38, 39, 40 |
5.3 Evaluating Definite integrals | 1, 3, 5, 7, 9, 11, 13 ,15 ,17, 19, 21, 23, 25, 27, 29, 37, 41, 42, 47, 49, 52 |
5.4 Fundamental Theorem of Calculus | 1, 3, 5, 7, 9, 11, 15, 17, 19 |
5.5 The Substitution Rule | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 22, 23, 27, 29, 30, 34, 37, 41, 43, 49, 50 |
Calendar for 2015 - 2016 Spring Semester MATH 1350 Section 100 (Class Number 9262):
(page maintained by Mark Barsamian , last updated October, 2016
(740) 593–9381 | Building 21, The Ridges
Ohio University | Athens OH 45701 | 740.593.1000 ADA Compliance | © 2018 Ohio University . All rights reserved.