%Derivatives
%If you modify this file, please indicate here and in the footnote
%Math263A
\documentclass[12pt]{article}
\usepackage{times}
\pagestyle{empty}
\addtolength{\textwidth}{1.2in}
\addtolength{\textheight}{1.2in}
\addtolength{\oddsidemargin}{-.58in}
\addtolength{\evensidemargin}{-.58in}
\renewcommand{\baselinestretch}{1.0}
\parindent = 0cm
\parskip = .1cm
\begin{document}
\begin{center}
{\Large
Derivatives\footnote{
Copyright \copyright 2002 Larry Snyder and Todd Young. All rights reserved.
Please address comments to young@math.ohiou.edu.}}
\end{center}
\begin{enumerate}
\item Try the following commands:
\begin{enumerate}
\item \verb&syms x &
\item \verb&f = x^2 &
\item \verb&f1 = diff(f) &
\item \verb&X = -3:.05:3; & \dotfill Makes \verb&X& into an array with entries
from \verb$-3$ to \verb$3$
\item \verb&F = subs(f, X); &
\item \verb&F1 = subs(f1, X); &
\item \verb&plot(X, F, 'b', X, F1, 'r') &
\item Explain exactly what happened.
\end{enumerate}
\item\label{rat} Repeat the above procedure for the function
$$
g(x) = \frac{x^5 + x^3 + 2}{8x + 1}
\qquad
\verb&(Input as: g = (x^5 + x^3 + 2) / (8*x + 1))&.
\]
\item Use the command \verb& ezplot(g1, [0 3]) & and then
change the interval until you can accurately guess a solution of $g'(x) = 0$.
Then try:
\begin{enumerate}
\item Enter \verb& solve(g1) & and describe the results. Which part of the output
is relevant? Did the computer find this output symbolically or numerically?
\item What is the percentage error of your guess.
\end{enumerate}
\item Prepare a brief (\verb$< $1 page) written report answering all
the questions. Use complete sentences and standard mathematical notation.
Do {\bf not} get a printout.
\end{enumerate}
\vfill
\noindent
\textsf{The user must consider the derivative as a function, and they must
consider issues of scale in plotting functions with asymptotes.}
\end{document}