%Partial Derivatives %If you modify this file, please indicate here and in the footnote %Math263D \documentclass[12pt]{article} \usepackage{times} \pagestyle{empty} \addtolength{\textwidth}{1.2in} \addtolength{\textheight}{1.2in} \addtolength{\oddsidemargin}{-.58in} \addtolength{\evensidemargin}{-.58in} \renewcommand{\baselinestretch}{1.0} \parindent = 0cm \parskip = .1cm \begin{document} \begin{center} {\Large Partial Derivatives\footnote{Copyright \copyright 2002 Steve Chapin. All rights reserved. Please address comments to young@math.ohiou.edu.}} \end{center} \begin{enumerate} \item Enter the following commands:\\ \verb& syms x y& \\ \verb& f = x*y*(x^2-y^2)/(x^2+y^2) &\\ \verb& fx = diff(f, x) &\\ \verb& fx = simplify(fx) & \\ \verb& subs(fx,{x, y},{0, y}) & \dotfill This is $f_x(0, y)$. \item Define $f(0, 0) = 0$ and compute, by hand, $$ f_x(0, 0) = \lim_{h \rightarrow 0} \frac{f(h, 0) - f(0, 0)}{h}. $$ Why is it necessary to use the definition to compute $f_x(0, 0)$? \item Try: \verb& fy = simplify(diff(f, y)) &\\ \verb& subs(fy, {x, y}, {x, 0}) & \dotfill This is $f_y(x, 0)$.\\ Then, compute $f_y(0, 0)$ by hand. \item Compute, by hand, $$ f_{xy}(0, 0) = (f_x)_y(0, 0) = \lim_{k \rightarrow 0} \frac{f_x(0, k) - f_x(0, 0)}{k} $$ and $\qquad$ $$ f_{yx}(0, 0) = \lim_{h \rightarrow 0} \frac{f_y(h, 0) - f_y(0, 0)}{h} $$ What do you notice about $f_{xy}(0, 0)$ and $f_{yx}(0, 0)$? \item Try: \verb& fxy = diff(fx,y) &\\ \verb& fxy = simplify(fxy) &\\ \verb& ezmesh(fxy) &\\ What do you notice about the graph of $f_{xy}$? \item Either obtain a printout of the graph, or, carefully sketch it by hand, making sure to clearly label axes. \item Using complete sentences and standard mathematical notation, write a brief report, showing your hand calculations and answering all the questions. \end{enumerate} \vfill \noindent \textsf{ The user is reminded of the definition of derivative and encounters a situation where it must be used. The user also encounters a situation where second derivatives are not continuous and $f_{xy} \ne f_{yx}$. } \end{document}
View Site in Mobile | Classic
Share by: