The molecular mechanisms that drive muscle adaptations after eccentric exercise training are multifaceted and likely impacted by age. Previous studies have reported that many genes and proteins respond differently in young and older muscles following training. Keratin 18 (Krt18), a cytoskeletal protein involved in force transduction and organization, was found to be upregulated after muscles performed repeated bouts of eccentric contractions, with higher levels observed in young muscle compared to older muscle. Therefore, the purpose of this study was to determine if Krt18 mediates skeletal muscle adaptations following eccentric exercise training. The anterior crural muscles of Krt18 knockout (KO) and wild-type (WT) mice were subjected to either a single bout or repeated bouts of eccentric contractions, with isometric torque assessed across the initial and final bouts. Functionally, Krt18 KO and WT mice did not differ prior to performing any eccentric contractions (p≥0.100). Muscle strength (tetanic isometric torques) and the ability to adapt to eccentric exercise training were also consistent across strains at all time points (p≥0.169). Stated differently, immediate strength deficits and the recovery of strength following a single or multiple bouts of eccentric contractions were similar between Krt18 KO and WT mice. In summary, the absence of Krt18 does not impede the muscle's ability to adapt to repeated eccentric contractions, suggesting it is not essential for exercise-induced remodeling.
Publications
2024
2023
The absence of dystrophin hypersensitizes skeletal muscle of lower and higher vertebrates to eccentric contraction (ECC)-induced strength loss. Loss of strength can be accompanied by transient and reversible alterations to sarcolemmal excitability and disruption, triad dysfunction, and aberrations in calcium kinetics and reactive oxygen species production. The degree of ECC-induced strength loss, however, appears dependent on several extrinsic and intrinsic factors such as vertebrate model, skeletal muscle preparation (in vivo, in situ, or ex vivo), skeletal muscle hierarchy (single fiber versus whole muscle and permeabilized versus intact), strength production, fiber branching, age, and genetic background, among others. Consistent findings across research groups show that dystrophin-deficient fast(er)-twitch muscle is hypersensitive to ECCs relative to wildtype muscle, but because preparations are highly variable and sensitivity to ECCs are used repeatedly to determine efficacy of many preclinical treatments, it is critical to evaluate the impact of skeletal muscle preparations on sensitivity to ECC-induced strength loss in dystrophin-deficient skeletal muscle. Here, we review and discuss variations in skeletal muscle preparations to evaluate the factors responsible for variations and discrepancies between research groups. We further highlight that dystrophin-deficiency, or loss of the dystrophin-glycoprotein complex in skeletal muscle, is not a prerequisite for accelerated strength loss-induced by ECCs.
PURPOSE: Alcoholics develop muscle atrophy and weakness from excessive ethanol (EtOH) intake. To date, most research has examined outcomes of alcohol-induced atrophy and weakness under basal or unstressed conditions despite physical stress being a normal occurrence in a physiological setting. Therefore, this study set out to determine if recovery of torque is impaired after repetitive bouts of physical stress in skeletal muscle during excessive short-term (experiment 1) and long-term (experiment 2) EtOH consumption.
METHODS: Twenty male and female mice were assigned to receive either 20% EtOH in their drinking water or 100% water. Short- and long-term consumption was predetermined to be EtOH intake starting at 4 and 26 wk, respectively. Anterior crural muscles performed repeated bouts of physical stress using in vivo eccentric contractions, with tetanic isometric torque being measured immediately pre- and postinjury. A total of 10 bouts were completed with 14 d between each bout within bouts 1-5 (experiment 1) and bouts 6-10 (experiment 2), and 12 wk between bouts 5 and 6.
RESULTS: Mice consuming EtOH had blood alcohol concentrations up to 270 mg·dL -1 . In experiment 1, five bouts of eccentric contractions did not reduce recovery of torque, regardless of sex or EtOH treatment ( P ≥ 0.173). Similarly, in experiment 2, preinjury torques did not differ from day 14 values regardless of sex or treatment ( P ≥ 0.322). However, there was a group effect in female mice for bouts 6 and 10 during experiment 2, with female EtOH mice being weaker than controls ( P ≤ 0.002).
CONCLUSIONS: Excessive short- or long-term EtOH misuse in a mouse model did not affect the muscle's ability to regain strength after repeated bouts of eccentric contractions, suggesting that EtOH may not be as detrimental to recovery as once predicted.
BACKGROUND: Excessive, chronic alcohol consumption can result in muscle atrophy and weakness (i.e., alcoholic myopathy) that impairs the quality of life. However, the precise mechanisms responsible for ethanol's detrimental impact on skeletal muscle have not been fully elucidated, in part due because the time course of disease development and progression are not well established. Therefore, we examined muscle strength and body composition longitudinally using an established preclinical mouse model of chronic alcoholic myopathy.
METHODS: To establish a time course of chronic alcoholic myopathy, we fed High Drinking in the Dark (HDID) female mice (n = 7) 20% ethanol for 32 weeks (following a 2-week ethanol ramping period). We assessed in vivo isometric contractility of the left ankle dorsiflexor and lean mass via NMR every 4 weeks. Outcomes were compared with age-matched control HDID mice that did not consume ethanol (n = 8).
RESULTS: At study completion, mice who consumed ethanol were 12% weaker than control mice (p = 0.015). Compared to baseline, consuming ethanol resulted in an acute transient reduction in dorsiflexion torque at Week 4 (p = 0.032) that was followed by a second, more sustained reduction at Week 20 (p < 0.001). Changes in lean mass paralleled those of dorsiflexor torque, with 40% of the variance in dorsiflexor torque being explained by the variance in lean mass of the ethanol group (p < 0.001). Dorsiflexor torque normalized to lean mass (mN·m/g lean mass) did not differ between the ethanol and control groups from Weeks 4 to 32 (p ≥ 0.498).
CONCLUSIONS: These results indicate that reductions in muscle mass and strength due to chronic, excessive ethanol intake are dynamic, not necessarily linear, processes. Moreover, the findings confirm that ethanol-induced weakness is primarily driven by muscle atrophy (i.e., loss of muscle quantity). Future studies should consider how chronic alcoholic myopathy develops and progresses rather than identifying changes after it has been diagnosed.
Estradiol affects several properties of skeletal muscle in females including strength. Here, we developed an approach to measure in vivo posttetanic twitch potentiation (PTP) of the anterior crural muscles of anesthetized mice and tested the hypothesis that 17β-estradiol (E2) enhances PTP through estrogen receptor (ER) signaling. Peak torques of potentiated twitches were ∼40%-60% greater than those of unpotentiated twitches and such PTP was greater in ovary-intact mice, or ovariectomized (Ovx) mice treated with E2, compared with Ovx mice ( P ≤ 0.047). PTP did not differ between mice with and without ERα ablated in skeletal muscle fibers ( P = 0.347). Treatment of ovary-intact and Ovx mice with ERβ antagonist and agonist (PHTPP and DPN, respectively) did not affect PTP ( P ≥ 0.258). Treatment with G1, an agonist of the G protein-coupled estrogen receptor (GPER), significantly increased PTP in Ovx mice from 41 ± 10% to 66 ± 21% (means ± SD; P = 0.034). Collectively, these data indicate that E2 signals through GPER, and not ERα or ERβ, in skeletal muscles of female mice to augment an in vivo parameter of strength, namely, PTP.NEW & NOTEWORTHY A novel in vivo approach was developed to measure potentiation of skeletal muscle torque in female mice and highlight another parameter of strength that is impacted by estradiol. The enhancement of PTP by estradiol is mediated distinctively through the G-protein estrogen receptor, GPER.
The ability of skeletal muscle to adapt to eccentric contractions has been suggested to be blunted in older muscle. If eccentric exercise is to be a safe and efficient training mode for older adults, preclinical studies need to establish if older muscle can effectively adapt and if not, determine the molecular signatures that are causing this impairment. The purpose of this study was to quantify the extent age impacts functional adaptations of muscle and identify genetic signatures associated with adaptation (or lack thereof). The anterior crural muscles of young (4 mo) and older (28 mo) female mice performed repeated bouts of eccentric contractions in vivo (50 contractions/wk for 5 wk) and isometric torque was measured across the initial and final bouts. Transcriptomics was completed by RNA-sequencing 1 wk following the fifth bout to identify common and differentially regulated genes. When torques post eccentric contractions were compared after the first and fifth bouts, young muscle exhibited a robust ability to adapt, increasing isometric torque 20%-36%, whereas isometric torque of older muscle decreased up to 18% ( P ≤ 0.047). Using differential gene expression, young and older muscles shared some common transcriptional changes in response to eccentric exercise training, whereas other transcripts appeared to be age dependent. That is, the ability to express particular genes after repeated bouts of eccentric contractions was not the same between ages. These molecular signatures may reveal, in part, why older muscles do not appear to be as adaptive to exercise training as young muscles.NEW & NOTEWORTHY The ability to adapt to exercise training may help prevent and combat sarcopenia. Here, we demonstrate young mouse muscles get stronger whereas older mouse muscles become weaker after repeated bouts of eccentric contractions, and that numerous genes were differentially expressed between age groups following training. These results highlight that molecular and functional plasticity is not fixed in skeletal muscle with advancing age, and the ability to handle or cope with physical stress may be impaired.
RAD140 is a selective androgen receptor modulator that produces anabolic effects within skeletal muscle. Thus, RAD140 may be effective at treating sarcopenia. No long-term studies have investigated how RAD140 influences strength in ageing muscle. This study aimed to determine how 10 weeks of RAD140 supplementation impacts strength, recovery from exercise, and overall health in ageing mice. Young and adult females were assigned to receive RAD140 (5 mg/kg) or a control solution. Dorsiflexor muscles were exposed to repeated bouts of eccentric contractions, and torque was measured before and after each bout. Adaptive potential and strength gains were calculated to assess the efficacy of RAD140 in muscle, while frailty status and mortality risk were used to measure health span. Supplementation of RAD140 increased frailty status and mortality risk in the young and adult treated groups compared to the controls (p ≤ 0.042). RAD140 decreased adaptive potential in young (p = 0.040) but not adult mice (p = 0.688). Torque did not differ between groups after 2-3 weeks of recovery (p ≥ 0.135). In conclusion, long-term RAD140 supplementation reduced indices of overall health and failed to improve strength in female mice, suggesting that RAD140 (at a 5mg/kg dosage) may be more detrimental than beneficial in delaying or preventing sarcopenia.
The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.
2022
PURPOSE: The ability of skeletal muscle to adapt to eccentric (ECC) contraction-induced injury is known as the repeated bout effect (RBE). Despite the RBE being a well-established phenomenon observed in skeletal muscle, cellular and molecular events particularly those at the membranes that contribute to the adaptive potential of muscle have yet to be established. Therefore, the purpose of this study was to examine how membrane-associated proteins respond to the RBE.
METHODS: Anterior crural muscles of C57BL/6 female mice (3-5 months) were subjected to repeated bouts of in vivo ECCs, with isometric torque being measured immediately before and after injury. A total of six bouts were completed with 7 d between each bout. Protein content of dystrophin, β-sarcoglycan, and junctophilin were then assessed via immunoblotting in injured and uninjured muscles.
RESULTS: When expressed relative to preinjury isometric torque of bout 1, deficits in postinjury isometric torque during bout 2 (38%) did not differ from bout 1 (36%; P = 0.646) and were attenuated during bouts 3 through 6 (range, 24%-15%; P ≤ 0.014). Contents of dystrophin, β-sarcoglycan, and junctophilin did not change immediately after a single bout of 50 maximal ECCs (P ≥ 0.155); however, as a result of repeated bouts, contents of dystrophin, β-sarcoglycan, and junctophilin all increased compared with muscles that completed one or no bouts of ECC contractions (P ≤ 0.003).
CONCLUSIONS: The RBE represents a physiological measure of skeletal muscle plasticity. Here, we demonstrate that repeated bouts of ECC contractions increase contents of dystrophin, β-sarcoglycan, and junctophilin and attenuate postinjury torque deficits. Given our results, accumulation of membrane-associated proteins likely contributes to strength adaptations observed after repeated bouts of ECC contractions.