Publications

2020

Baumann, Cory W, Gordon L Warren, and Dawn A Lowe. (2020) 2020. “ Plasmalemma Function Is Rapidly Restored in Mdx Muscle After Eccentric Contractions. ”. Medicine and Science in Sports and Exercise 52 (2): 354-61. https://doi.org/10.1249/MSS.0000000000002126.

PURPOSE: Muscle that lacks dystrophin, as in the mdx mouse, has a heightened sensitivity to eccentric (ECC) contraction-induced strength loss but an enhanced rate of recovery. However, the timeline and mechanisms underlying why mdx muscle recovers quicker have yet to be determined. We used an EMG approach to analyze plasmalemma electrophysiological function during and after ECC contraction-induced injury to test the hypothesis that loss of plasmalemmal excitability is a transient event in mdx muscle.

METHODS: Mice were implanted with stimulating electrodes on the common peroneal nerve and EMG electrodes on the tibialis anterior muscle. Anterior crural muscles of anesthetized mice performed one or two bouts of 50 injurious ECC contractions, and recovery of maximal isometric torque and M-wave root mean square (RMS) were assessed after each bout.

RESULTS: Maximal isometric torque and M-wave RMS were equally reduced 62% (P < 0.001) in mdx mice immediately after the initial ECC injury. For these mdx mice, M-wave RMS was still reduced at 2 d postinjury (P = 0.034) but was not different from preinjury values by 6 d (P = 0.106), whereas torque took up to 9 d to recover (P = 0.333). M-wave RMS did not change (P = 0.390) in wild-type mice in response to ECC injury, whereas torque decreased 35% (P < 0.001) and recovered by day 2 (P = 0.311). Results from the second bout of ECC contractions were similar to those observed during and after the initial injury.

CONCLUSION: Functional dystrophin is necessary for excitation to occur at the plasmalemma during ECC contractions but is not essential for the complete recovery of plasmalemma electrophysiological function or maximal isometric strength.

Bosnakovski, Darko, Ahmed S Shams, Ce Yuan, Meiricris T da Silva, Elizabeth T Ener, Cory W Baumann, Angus J Lindsay, et al. (2020) 2020. “ Transcriptional and Cytopathological Hallmarks of FSHD in Chronic DUX4-Expressing Mice. ”. The Journal of Clinical Investigation 130 (5): 2465-77. https://doi.org/10.1172/JCI133303.

Facioscapulohumeral muscular dystrophy (FSHD) is caused by loss of repression of the DUX4 gene; however, the DUX4 protein is rare and difficult to detect in human muscle biopsies, and pathological mechanisms are obscure. FSHD is also a chronic disease that progresses slowly over decades. We used the sporadic, low-level, muscle-specific expression of DUX4 enabled by the iDUX4pA-HSA mouse to develop a chronic long-term muscle disease model. After 6 months of extremely low sporadic DUX4 expression, dystrophic muscle presented hallmarks of FSHD histopathology, including muscle degeneration, capillary loss, fibrosis, and atrophy. We investigated the transcriptional profile of whole muscle as well as endothelial cells and fibroadiopogenic progenitors (FAPs). Strikingly, differential gene expression profiles of both whole muscle and, to a lesser extent, FAPs, showed significant overlap with transcriptional profiles of MRI-guided human FSHD muscle biopsies. These results demonstrate a pathophysiological similarity between disease in muscles of iDUX4pA-HSA mice and humans with FSHD, solidifying the value of chronic rare DUX4 expression in mice for modeling pathological mechanisms in FSHD and highlighting the importance FAPs in this disease.

Lindsay, Angus, Cory W Baumann, Robyn T Rebbeck, Samantha L Yuen, William M Southern, James S Hodges, Razvan L Cornea, David D Thomas, James M Ervasti, and Dawn A Lowe. (2020) 2020. “ Mechanical Factors Tune the Sensitivity of Mdx Muscle to Eccentric Strength Loss and Its Protection by Antioxidant and Calcium Modulators. ”. Skeletal Muscle 10 (1): 3. https://doi.org/10.1186/s13395-020-0221-2.

BACKGROUND: Dystrophin deficiency sensitizes skeletal muscle of mice to eccentric contraction (ECC)-induced strength loss. ECC protocols distinguish dystrophin-deficient from healthy, wild type muscle, and test the efficacy of therapeutics for Duchenne muscular dystrophy (DMD). However, given the large lab-to-lab variability in ECC-induced strength loss of dystrophin-deficient mouse skeletal muscle (10-95%), mechanical factors of the contraction likely impact the degree of loss. Therefore, the purpose of this study was to evaluate the extent to which mechanical variables impact sensitivity of dystrophin-deficient mouse skeletal muscle to ECC.

METHODS: We completed ex vivo and in vivo muscle preparations of the dystrophin-deficient mdx mouse and designed ECC protocols within physiological ranges of contractile parameters (length change, velocity, contraction duration, and stimulation frequencies). To determine whether these contractile parameters affected known factors associated with ECC-induced strength loss, we measured sarcolemmal damage after ECC as well as strength loss in the presence of the antioxidant N-acetylcysteine (NAC) and small molecule calcium modulators that increase SERCA activity (DS-11966966 and CDN1163) or lower calcium leak from the ryanodine receptor (Chloroxine and Myricetin).

RESULTS: The magnitude of length change, work, and stimulation duration ex vivo and in vivo of an ECC were the most important determinants of strength loss in mdx muscle. Passive lengthening and submaximal stimulations did not induce strength loss. We further showed that sarcolemmal permeability was associated with muscle length change, but it only accounted for a minimal fraction (21%) of the total strength loss (70%). The magnitude of length change also significantly influenced the degree to which NAC and small molecule calcium modulators protected against ECC-induced strength loss.

CONCLUSIONS: These results indicate that ECC-induced strength loss of mdx skeletal muscle is dependent on the mechanical properties of the contraction and that mdx muscle is insensitive to ECC at submaximal stimulation frequencies. Rigorous design of ECC protocols is critical for effective use of strength loss as a readout in evaluating potential therapeutics for muscular dystrophy.

Larson, Alexie A, Cory W Baumann, Michael Kyba, and Dawn A Lowe. (2020) 2020. “ Oestradiol Affects Skeletal Muscle Mass, Strength and Satellite Cells Following Repeated Injuries. ”. Experimental Physiology 105 (10): 1700-1707. https://doi.org/10.1113/EP088827.

NEW FINDINGS: What is the central question of this study? Oestradiol (E2 ) plays an important role in regulating skeletal muscle strength in females. To what extent does E2 deficiency affect recovery of strength and satellite cell number when muscle is challenged by multiple injuries? What is the main finding and its importance? E2 deficiency impairs the adaptive potential of skeletal muscle following repeated injuries, as measured by muscle mass and strength. The impairment is likely multifactorial with our data indicating that one mechanism is reduction in satellite cell number. Our findings have implications for ageing, hormone replacement and regenerative medicine in regards to maintaining satellite cell number and ultimately the preservation of skeletal muscle's adaptive potential.

ABSTRACT: Oestradiol's effects on skeletal muscle are multifactorial including the preservation of mass, contractility and regeneration. Here, we aimed to determine the extent to which oestradiol deficiency affects strength recovery when muscle is challenged by multiple BaCl2 -induced injuries and to assess how satellite cell number is influenced by the combination of oestradiol deficiency and repetitive skeletal muscle injuries. A longitudinal study was designed, using an in vivo anaesthetized mouse approach to precisely and repeatedly measure maximal isometric torque, coupled with endpoint fluorescence-activated cell sorting to quantify satellite cells. Isometric torque and strength gains were lower in ovariectomized mice at several time points after the injuries compared to those treated with 17β-oestradiol. Satellite cell number was 41-43% lower in placebo- than in oestradiol-treated ovariectomized mice, regardless of injury status or number of injuries. Together, these results indicate that the loss of oestradiol blunts adaptive strength gains and that the number of satellite cells likely contributes to the impairment.

Baumann, Cory W, Dongmin Kwak, and LaDora Thompson V. (2020) 2020. “ Phenotypic Frailty Assessment in Mice: Development, Discoveries, and Experimental Considerations. ”. Physiology (Bethesda, Md.) 35 (6): 405-14. https://doi.org/10.1152/physiol.00016.2020.

The underlying mechanisms contributing to the onset of frailty, its progression, and its mortality risk remain unknown. Recently, the two most common human frailty assessments were reverse-translated to mice. Here, we highlight the development of the mouse frailty phenotype, unique discoveries, experimental considerations, and future perspectives.

2019

Cabelka, Christine A, Cory W Baumann, Brittany C Collins, Nardina Nash, Gengyun Le, Angus Lindsay, Espen E Spangenburg, and Dawn A Lowe. (2019) 2019. “ Effects of Ovarian Hormones and Estrogen Receptor α on Physical Activity and Skeletal Muscle Fatigue in Female Mice. ”. Experimental Gerontology 115: 155-64. https://doi.org/10.1016/j.exger.2018.11.003.

UNLABELLED: Menopause is associated with declines in physical activity and skeletal muscle strength. Physical activity is also reduced in rodents after ovariectomy (OVX) and whole-body estrogen receptor α (ERα) knockout. However, it is unclear if the effects are estradiol (E2) specific. Thus, the overall purpose of this study was to investigate the effects of the ovarian hormones, E2 and progesterone (P4), and skeletal muscle ERα (skmERα) on physical activity and skeletal muscle contractility in female mice.

METHODS: Study 1: Forty female C57Bl/6J mice were given free access to running wheels for 2 weeks to assess baseline running and randomized into 4 treatment groups: OVX, OVX + E2, OVX + P4, OVX + E2 + P4. All mice underwent OVX, returned to wheels for 2 weeks, received hormone pellet implants and returned to running wheels for 6 weeks, after which soleus muscle contractility testing was completed. Study 2: Thirty-two skeletal muscle specific ERα knock-out (skmERαKO) mice and wildtype (WT) littermates were randomized into 4 groups: skmERαKO-Run, skmERαWT-Run, skmERαKO-Sed, and skmERαWT-Sed. Run mice were given free access to wheels for 20 wk and sedentary (Sed) mice maintained normal cage activities. At the end point, muscle contractility was tested.

RESULTS: Study 1: OVX + E2 + P4 group ran greater distances than both the OVX and OVX + P4 groups (p ≤ 0.009). After fatiguing contractions, soleus muscles of the OVX + E2 + P4 group maintained greater submaximal force than those of other groups (p = 0.023). Immediately after the fatiguing contractions, OVX + E2 + P4 muscles had greater maximal force production than the OVX + E2 group (p = 0.027). Study 2: There were no differences in running distance between skmERαWT and skmERαKO mice (p = 0.240). Soleus muscles of skmERαKO mice were more fatigable (p < 0.001) and did not recover force as well as skmERαWT mice (p < 0.001). In vivo isometric, concentric and eccentric torque was decreased in skmERαKO mice compared to skmERαWT mice (p ≤ 0.029).

CONCLUSIONS: Combined treatment of E2 + P4 in OVX mice restored physical activity, predominantly driven by E2, and protected soleus muscles against fatigue. Muscle of skmERαKO mice was weak regardless of physical activity. Although 20 wk of wheel running partially prevented force loss during fatigue in skmERαKO mice, force production during recovery remained low, indicating that estradiol functions through ERα in skeletal muscle.

Collins, Brittany C, Robert W Arpke, Alexie A Larson, Cory W Baumann, Ning Xie, Christine A Cabelka, Nardina L Nash, et al. (2019) 2019. “ Estrogen Regulates the Satellite Cell Compartment in Females. ”. Cell Reports 28 (2): 368-381.e6. https://doi.org/10.1016/j.celrep.2019.06.025.

Skeletal muscle mass, strength, and regenerative capacity decline with age, with many measures showing a greater deterioration in females around the time estrogen levels decrease at menopause. Here, we show that estrogen deficiency severely compromises the maintenance of muscle stem cells (i.e., satellite cells) as well as impairs self-renewal and differentiation into muscle fibers. Mechanistically, by hormone replacement, use of a selective estrogen-receptor modulator (bazedoxifene), and conditional estrogen receptor knockout, we implicate 17β-estradiol and satellite cell expression of estrogen receptor α and show that estrogen signaling through this receptor is necessary to prevent apoptosis of satellite cells. Early data from a biopsy study of women who transitioned from peri- to post-menopause are consistent with the loss of satellite cells coincident with the decline in estradiol in humans. Together, these results demonstrate an important role for estrogen in satellite cell maintenance and muscle regeneration in females.

Baumann, Cory W, Dongmin Kwak, and LaDora Thompson V. (2019) 2019. “ Sex-Specific Components of Frailty in C57BL/6 Mice. ”. Aging 11 (14): 5206-14. https://doi.org/10.18632/aging.102114.

Many age-related biochemical, physiological and behavioral changes are known to be sex-specific. However, how sex influences frailty status and mortality risk in frail rodents has yet to be established. The purpose of this study was therefore to characterize sex differences in frail mice across the lifespan. Male (n=29) and female (n=27) mice starting at 17 months of age were assessed using a frailty phenotype adjusted according to sex, which included body weight, walking speed, strength, endurance and physical activity. Regardless of sex, frail mice were phenotypically dysfunctional compared to age-matched non-frail mice, while non-frail females generally possessed a higher body fat percentage and were more physically active than non-frail males (p≤0.05). The prevalence of frailty was greater in female mice at 26 months of age (p=0.05), but if normalized to mean lifespan, no sex differences remained. No differences were detected in the rate of death or mean lifespan between frail male and female mice (p≥0.12). In closing, these data indicate that sexual differences exist in aging C57BL/6 mice and if the frailty criteria are adjusted according to sex, the prevalence of frailty increases across age with frail mice dying early in life, regardless of sex.

2018

Baumann, Cory W, Dongmin Kwak, Deborah A Ferrington, and LaDora Thompson V. (2018) 2018. “ Downhill Exercise Alters Immunoproteasome Content in Mouse Skeletal Muscle. ”. Cell Stress & Chaperones 23 (4): 507-17. https://doi.org/10.1007/s12192-017-0857-y.

Content of the immunoproteasome, the inducible form of the standard proteasome, increases in atrophic muscle suggesting it may be associated with skeletal muscle remodeling. However, it remains unknown if the immunoproteasome responds to stressful situations that do not promote large perturbations in skeletal muscle proteolysis. The purpose of this study was to determine how an acute bout of muscular stress influences immunoproteasome content. To accomplish this, wild-type (WT) and immunoproteasome knockout lmp7 -/- /mecl1 -/- (L7M1) mice were run downhill on a motorized treadmill. Soleus muscles were excised 1 and 3 days post-exercise and compared to unexercised muscle (control). Ex vivo physiology, histology and biochemical analyses were used to assess the effects of immunoproteasome knockout and unaccustomed exercise. Besides L7M1 muscle being LMP7/MECL1 deficient, no other major biochemical, histological or functional differences were observed between the control muscles. In both strains, the downhill run shifted the force-frequency curve to the right and reduced twitch force; however, it did not alter tetanic force or inflammatory markers. In the days post-exercise, several of the proteasome's catalytic subunits were upregulated. Specifically, WT muscle increased LMP7 while L7M1 muscle instead increased β5. These findings indicate that running mice downhill results in subtle contractile characteristics that correspond to skeletal muscle injury, yet it does not appear to induce a significant inflammatory response. Interestingly, this minor stress activated the production of specific immunoproteasome subunits that if knocked out were replaced by components of the standard proteasome. These data suggest that the immunoproteasome may be involved in maintaining cellular homeostasis.

Baumann, Cory W, Dongmin Kwak, and LaDora Thompson V. (2018) 2018. “ Assessing Onset, Prevalence and Survival in Mice Using a Frailty Phenotype. ”. Aging 10 (12): 4042-53. https://doi.org/10.18632/aging.101692.

Little is known whether frailty assessments in mice are capable of distinguishing important characteristics of the frailty syndrome. The goals of this study were to identify the onset and the prevalence of frailty across the lifespan and to determine if a frailty phenotype predicts mortality. Body weight, walking speed, strength, endurance and physical activity were assessed in male C57BL/6 mice every three months starting at 14 months of age. Mice that fell in the bottom 20% for walking speed, strength, endurance and physical activity, and in the top 20% for body weight were considered to have a positive frailty marker. The onset of frailty occurred at 17 months, and represented only 3.5% of the mouse cohort. The percentage of frail mice increased with age until basically every mouse was identified as frail. Frail, pre-frail, and non-frail mice had mean survival ages of 27, 29 and 34 months, respectively. In closing, frail mice lack resilience; in that, multiple tissue/organ systems may deteriorate at an accelerated rate and ultimately lead to early mortality when compared to non-frail mice. Identifying the onset and prevalence of frailty, in addition to predicting mortality, has potential to yield information about several aging processes.